Metal economy in host-microbe interactions
نویسندگان
چکیده
HOST NUTRITIONAL IMMUNITY: DEPRIVING OR POISONING To date, the implication of divalent metals have been described in two different immune strategies that aim to fight microbial invaders. One consists in depriving microbes of essential divalent metals whereas the other aims at overloading invaders with toxic concentrations of metal. The contributions in this section present, in different situations, various aspects of this metal economy at the host-microbe interface. Two papers deal with metal homeostasis as hosts interact with bacteria. Diaz-Ochoa et al. (2014) review immunological mechanisms to sequester Fe, Mn, and Zn in the inflamed gut and strategies of commensals and pathogens to evade mucosal defenses and obtain such nutrients. Lisher and Giedroc (2013) detail chemical and structural mechanisms to capture Mn, an antioxidant used by pathogens to adapt to human hosts, and the impact of Fe and Zn on Mn bioavailability during infections. The most coveted metal, iron is key to nutritional immunity and microbial virulence. Using amoeba as model phagocyte, Bozzaro et al. (2013) present the tug of war between a bacterial predator, sequestering intracellular iron to resist invasion, and pathogens which elude such defense mechanisms. On mammalian defense against intracellular bacteria and protozoan parasites, Silva-Gomes et al. (2013) outline divergent approaches: iron-withholding to prevent microbial replication or iron-based oxidative injury to kill invaders. Host may also target invaders with toxic doses of Cu and Zn, normally kept at low concentrations. Neyrolles et al. (2013) present an opinion article on bacterial Zn and Cu poisoning in the context of Mycobacterium tuberculosis infection. Chaturvedi and Henderson (2014) summarize the specific properties of copper and its toxic effect on bacteria cells. Arguello et al. (2013) review how bacteria integrate homeostatic mechanisms to avoid Cu toxicity by sensing and regulating ion chelation, chaperoning and membrane transport.
منابع مشابه
Iron in Plant–Pathogen Interactions
Infectious diseases are the result of competitive relationships between a host organism and a pathogen. In host vertebrate–microbe interactions, the acquisition of iron for the essential metabolism of pathogenic organisms and the need of the host to bind and sequestrate the metal are central issues. Plants are also confronted with a wide variety of pathogenic microorganisms that can be highly d...
متن کاملExperimental Evolution as an Underutilized Tool for Studying Beneficial Animal–Microbe Interactions
Microorganisms play a significant role in the evolution and functioning of the eukaryotes with which they interact. Much of our understanding of beneficial host-microbe interactions stems from studying already established associations; we often infer the genotypic and environmental conditions that led to the existing host-microbe relationships. However, several outstanding questions remain, inc...
متن کاملCan They Make It on Their Own? Hosts, Microbes, and the Holobiont Niche
Virtually all multicellular organisms host a community of symbionts composed of mutualistic, commensal, and pathogenic microbes, i.e., their microbiome. The mechanism of selection on host-microbe assemblages remains contentious, particularly regarding whether selection acts differently on hosts and their microbial symbionts. Here, we attempt to reconcile these viewpoints using a model that desc...
متن کاملSPECIAL ISSUE: NATURE’S MICROBIOME Diffuse symbioses: roles of plant–plant, plant–microbe and microbe–microbe interactions in structuring the soil microbiome
A conceptual model emphasizing direct host–microbe interactions has dominated work on host-associated microbiomes. To understand plant–microbiome associations, however, broader influences on microbiome composition and functioning must be incorporated, such as those arising from plant–plant and microbe–microbe interactions. We sampled soil microbiomes associated with target plant species (Androp...
متن کاملDiffuse symbioses: roles of plant-plant, plant-microbe and microbe-microbe interactions in structuring the soil microbiome.
A conceptual model emphasizing direct host-microbe interactions has dominated work on host-associated microbiomes. To understand plant-microbiome associations, however, broader influences on microbiome composition and functioning must be incorporated, such as those arising from plant-plant and microbe-microbe interactions. We sampled soil microbiomes associated with target plant species (Androp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014